/* Test allocation function behavior on allocation failure. Copyright (C) 2015-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; see the file COPYING.LIB. If not, see . */ /* This test case attempts to trigger various unusual conditions related to allocation failures, notably switching to a different arena, and falling back to mmap (via sysmalloc). */ #include #include #include #include #include #include #include #include #include #include /* Wrapper for calloc with an optimization barrier. */ static void * __attribute__ ((noinline, noclone)) allocate_zeroed (size_t a, size_t b) { return calloc (a, b); } /* System page size, as determined by sysconf (_SC_PAGE_SIZE). */ static unsigned long page_size; /* Test parameters. */ static size_t allocation_size; static size_t alignment; static enum { with_malloc, with_realloc, with_aligned_alloc, with_memalign, with_posix_memalign, with_valloc, with_pvalloc, with_calloc, last_allocation_function = with_calloc } allocation_function; /* True if an allocation function uses the alignment test parameter. */ const static bool alignment_sensitive[last_allocation_function + 1] = { [with_aligned_alloc] = true, [with_memalign] = true, [with_posix_memalign] = true, }; /* Combined pointer/expected alignment result of an allocation function. */ struct allocate_result { void *pointer; size_t alignment; }; /* Call the allocation function specified by allocation_function, with allocation_size and alignment (if applicable) as arguments. No alignment check. */ static struct allocate_result allocate_1 (void) { switch (allocation_function) { case with_malloc: return (struct allocate_result) {malloc (allocation_size), _Alignof (max_align_t)}; case with_realloc: { void *p = realloc (NULL, 16); void *q; if (p == NULL) q = NULL; else { q = realloc (p, allocation_size); if (q == NULL) free (p); } return (struct allocate_result) {q, _Alignof (max_align_t)}; } case with_aligned_alloc: { void *p = aligned_alloc (alignment, allocation_size); return (struct allocate_result) {p, alignment}; } case with_memalign: { void *p = memalign (alignment, allocation_size); return (struct allocate_result) {p, alignment}; } case with_posix_memalign: { void *p; if (posix_memalign (&p, alignment, allocation_size)) { if (errno == ENOMEM) p = NULL; else { printf ("error: posix_memalign (p, %zu, %zu): %m\n", alignment, allocation_size); abort (); } } return (struct allocate_result) {p, alignment}; } case with_valloc: { void *p = valloc (allocation_size); return (struct allocate_result) {p, page_size}; } case with_pvalloc: { void *p = pvalloc (allocation_size); return (struct allocate_result) {p, page_size}; } case with_calloc: { char *p = allocate_zeroed (1, allocation_size); /* Check for non-zero bytes. */ if (p != NULL) for (size_t i = 0; i < allocation_size; ++i) if (p[i] != 0) { printf ("error: non-zero byte at offset %zu\n", i); abort (); } return (struct allocate_result) {p, _Alignof (max_align_t)}; } } abort (); } /* Call allocate_1 and perform the alignment check on the result. */ static void * allocate (void) { struct allocate_result r = allocate_1 (); if ((((uintptr_t) r.pointer) & (r.alignment - 1)) != 0) { printf ("error: allocation function %d, size %zu not aligned to %zu\n", (int) allocation_function, allocation_size, r.alignment); abort (); } return r.pointer; } /* Barriers to synchronize thread creation and termination. */ static pthread_barrier_t start_barrier; static pthread_barrier_t end_barrier; /* Thread function which performs the allocation test. Called by pthread_create and from the main thread. */ static void * allocate_thread (void *closure) { /* Wait for the creation of all threads. */ { int ret = pthread_barrier_wait (&start_barrier); if (ret != 0 && ret != PTHREAD_BARRIER_SERIAL_THREAD) { errno = ret; printf ("error: pthread_barrier_wait: %m\n"); abort (); } } /* Allocate until we run out of memory, creating a single-linked list. */ struct list { struct list *next; }; struct list *head = NULL; while (true) { struct list *e = allocate (); if (e == NULL) break; e->next = head; head = e; } /* Wait for the allocation of all available memory. */ { int ret = pthread_barrier_wait (&end_barrier); if (ret != 0 && ret != PTHREAD_BARRIER_SERIAL_THREAD) { errno = ret; printf ("error: pthread_barrier_wait: %m\n"); abort (); } } /* Free the allocated memory. */ while (head != NULL) { struct list *next = head->next; free (head); head = next; } return NULL; } /* Number of threads (plus the main thread. */ enum { thread_count = 8 }; /* Thread attribute to request creation of threads with a non-default stack size which is rather small. This avoids interfering with the configured address space limit. */ static pthread_attr_t small_stack; /* Runs one test in multiple threads, all in a subprocess so that subsequent tests do not interfere with each other. */ static void run_one (void) { /* Isolate the tests in a subprocess, so that we can start over from scratch. */ pid_t pid = fork (); if (pid == 0) { /* In the child process. Create the allocation threads. */ pthread_t threads[thread_count]; for (unsigned i = 0; i < thread_count; ++i) { int ret = pthread_create (threads + i, &small_stack, allocate_thread, NULL); if (ret != 0) { errno = ret; printf ("error: pthread_create: %m\n"); abort (); } } /* Also run the test on the main thread. */ allocate_thread (NULL); for (unsigned i = 0; i < thread_count; ++i) { int ret = pthread_join (threads[i], NULL); if (ret != 0) { errno = ret; printf ("error: pthread_join: %m\n"); abort (); } } _exit (0); } else if (pid < 0) { printf ("error: fork: %m\n"); abort (); } /* In the parent process. Wait for the child process to exit. */ int status; if (waitpid (pid, &status, 0) < 0) { printf ("error: waitpid: %m\n"); abort (); } if (status != 0) { printf ("error: exit status %d from child process\n", status); exit (1); } } /* Run all applicable allocation functions for the current test parameters. */ static void run_allocation_functions (void) { for (int af = 0; af <= last_allocation_function; ++af) { /* Run alignment-sensitive functions for non-default alignments. */ if (alignment_sensitive[af] != (alignment != 0)) continue; allocation_function = af; run_one (); } } int do_test (void) { /* Limit the number of malloc arenas. We use a very low number so that despute the address space limit configured below, all requested arenas a can be created. */ if (mallopt (M_ARENA_MAX, 2) == 0) { printf ("error: mallopt (M_ARENA_MAX) failed\n"); return 1; } /* Determine the page size. */ { long ret = sysconf (_SC_PAGE_SIZE); if (ret < 0) { printf ("error: sysconf (_SC_PAGE_SIZE): %m\n"); return 1; } page_size = ret; } /* Limit the size of the process, so that memory allocation in allocate_thread will eventually fail, without impacting the entire system. */ { struct rlimit limit; if (getrlimit (RLIMIT_AS, &limit) != 0) { printf ("getrlimit (RLIMIT_AS) failed: %m\n"); return 1; } long target = 200 * 1024 * 1024; if (limit.rlim_cur == RLIM_INFINITY || limit.rlim_cur > target) { limit.rlim_cur = target; if (setrlimit (RLIMIT_AS, &limit) != 0) { printf ("setrlimit (RLIMIT_AS) failed: %m\n"); return 1; } } } /* Initialize thread attribute with a reduced stack size. */ { int ret = pthread_attr_init (&small_stack); if (ret != 0) { errno = ret; printf ("error: pthread_attr_init: %m\n"); abort (); } unsigned long stack_size = ((256 * 1024) / page_size) * page_size; if (stack_size < 4 * page_size) stack_size = 8 * page_size; ret = pthread_attr_setstacksize (&small_stack, stack_size); if (ret != 0) { errno = ret; printf ("error: pthread_attr_setstacksize: %m\n"); abort (); } } /* Initialize the barriers. We run thread_count threads, plus 1 for the main thread. */ { int ret = pthread_barrier_init (&start_barrier, NULL, thread_count + 1); if (ret != 0) { errno = ret; printf ("error: pthread_barrier_init: %m\n"); abort (); } ret = pthread_barrier_init (&end_barrier, NULL, thread_count + 1); if (ret != 0) { errno = ret; printf ("error: pthread_barrier_init: %m\n"); abort (); } } allocation_size = 144; run_allocation_functions (); allocation_size = page_size; run_allocation_functions (); alignment = 128; allocation_size = 512; run_allocation_functions (); allocation_size = page_size; run_allocation_functions (); allocation_size = 17 * page_size; run_allocation_functions (); /* Deallocation the barriers and the thread attribute. */ { int ret = pthread_barrier_destroy (&end_barrier); if (ret != 0) { errno = ret; printf ("error: pthread_barrier_destroy: %m\n"); return 1; } ret = pthread_barrier_destroy (&start_barrier); if (ret != 0) { errno = ret; printf ("error: pthread_barrier_destroy: %m\n"); return 1; } ret = pthread_attr_destroy (&small_stack); if (ret != 0) { errno = ret; printf ("error: pthread_attr_destroy: %m\n"); return 1; } } return 0; } /* The repeated allocations take some time on slow machines. */ #define TIMEOUT 20 #define TEST_FUNCTION do_test () #include "../test-skeleton.c"