/* Linuxthreads - a simple clone()-based implementation of Posix */ /* threads for Linux. */ /* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */ /* */ /* This program is free software; you can redistribute it and/or */ /* modify it under the terms of the GNU Library General Public License */ /* as published by the Free Software Foundation; either version 2 */ /* of the License, or (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU Library General Public License for more details. */ /* Thread creation, initialization, and basic low-level routines */ #include #include #include #include #include #include #include #include #include #include #include #include "pthread.h" #include "internals.h" #include "spinlock.h" #include "restart.h" #include "smp.h" #include #include #include #include /* Sanity check. */ #if !defined __SIGRTMIN || (__SIGRTMAX - __SIGRTMIN) < 3 # error "This must not happen" #endif #if !(USE_TLS && HAVE___THREAD) /* These variables are used by the setup code. */ extern int _errno; extern int _h_errno; /* We need the global/static resolver state here. */ # include # undef _res extern struct __res_state _res; #endif #ifdef USE_TLS /* We need only a few variables. */ #define manager_thread __pthread_manager_threadp pthread_descr __pthread_manager_threadp attribute_hidden; #else /* Descriptor of the initial thread */ struct _pthread_descr_struct __pthread_initial_thread = { .p_header.data.self = &__pthread_initial_thread, .p_nextlive = &__pthread_initial_thread, .p_prevlive = &__pthread_initial_thread, .p_tid = PTHREAD_THREADS_MAX, .p_lock = &__pthread_handles[0].h_lock, .p_start_args = PTHREAD_START_ARGS_INITIALIZER(NULL), #if !(USE_TLS && HAVE___THREAD) .p_errnop = &_errno, .p_h_errnop = &_h_errno, .p_resp = &_res, #endif .p_userstack = 1, .p_resume_count = __ATOMIC_INITIALIZER, .p_alloca_cutoff = __MAX_ALLOCA_CUTOFF }; /* Descriptor of the manager thread; none of this is used but the error variables, the p_pid and p_priority fields, and the address for identification. */ #define manager_thread (&__pthread_manager_thread) struct _pthread_descr_struct __pthread_manager_thread = { .p_header.data.self = &__pthread_manager_thread, .p_header.data.multiple_threads = 1, .p_lock = &__pthread_handles[1].h_lock, .p_start_args = PTHREAD_START_ARGS_INITIALIZER(__pthread_manager), #if !(USE_TLS && HAVE___THREAD) .p_errnop = &__pthread_manager_thread.p_errno, #endif .p_nr = 1, .p_resume_count = __ATOMIC_INITIALIZER, .p_alloca_cutoff = PTHREAD_STACK_MIN / 4 }; #endif /* Pointer to the main thread (the father of the thread manager thread) */ /* Originally, this is the initial thread, but this changes after fork() */ #ifdef USE_TLS pthread_descr __pthread_main_thread; #else pthread_descr __pthread_main_thread = &__pthread_initial_thread; #endif /* Limit between the stack of the initial thread (above) and the stacks of other threads (below). Aligned on a STACK_SIZE boundary. */ char *__pthread_initial_thread_bos; /* File descriptor for sending requests to the thread manager. */ /* Initially -1, meaning that the thread manager is not running. */ int __pthread_manager_request = -1; int __pthread_multiple_threads attribute_hidden; /* Other end of the pipe for sending requests to the thread manager. */ int __pthread_manager_reader; /* Limits of the thread manager stack */ char *__pthread_manager_thread_bos; char *__pthread_manager_thread_tos; /* For process-wide exit() */ int __pthread_exit_requested; int __pthread_exit_code; /* Maximum stack size. */ size_t __pthread_max_stacksize; /* Nozero if the machine has more than one processor. */ int __pthread_smp_kernel; #if !__ASSUME_REALTIME_SIGNALS /* Pointers that select new or old suspend/resume functions based on availability of rt signals. */ void (*__pthread_restart)(pthread_descr) = __pthread_restart_old; void (*__pthread_suspend)(pthread_descr) = __pthread_suspend_old; int (*__pthread_timedsuspend)(pthread_descr, const struct timespec *) = __pthread_timedsuspend_old; #endif /* __ASSUME_REALTIME_SIGNALS */ /* Communicate relevant LinuxThreads constants to gdb */ const int __pthread_threads_max = PTHREAD_THREADS_MAX; const int __pthread_sizeof_handle = sizeof(struct pthread_handle_struct); const int __pthread_offsetof_descr = offsetof(struct pthread_handle_struct, h_descr); const int __pthread_offsetof_pid = offsetof(struct _pthread_descr_struct, p_pid); const int __linuxthreads_pthread_sizeof_descr = sizeof(struct _pthread_descr_struct); const int __linuxthreads_initial_report_events; const char __linuxthreads_version[] = VERSION; /* Forward declarations */ static void pthread_onexit_process(int retcode, void *arg); #ifndef HAVE_Z_NODELETE static void pthread_atexit_process(void *arg, int retcode); static void pthread_atexit_retcode(void *arg, int retcode); #endif static void pthread_handle_sigcancel(int sig); static void pthread_handle_sigrestart(int sig); static void pthread_handle_sigdebug(int sig); /* Signal numbers used for the communication. In these variables we keep track of the used variables. If the platform does not support any real-time signals we will define the values to some unreasonable value which will signal failing of all the functions below. */ int __pthread_sig_restart = __SIGRTMIN; int __pthread_sig_cancel = __SIGRTMIN + 1; int __pthread_sig_debug = __SIGRTMIN + 2; extern int __libc_current_sigrtmin_private (void); #if !__ASSUME_REALTIME_SIGNALS static int rtsigs_initialized; static void init_rtsigs (void) { if (rtsigs_initialized) return; if (__libc_current_sigrtmin_private () == -1) { __pthread_sig_restart = SIGUSR1; __pthread_sig_cancel = SIGUSR2; __pthread_sig_debug = 0; } else { __pthread_restart = __pthread_restart_new; __pthread_suspend = __pthread_wait_for_restart_signal; __pthread_timedsuspend = __pthread_timedsuspend_new; } rtsigs_initialized = 1; } #endif /* Initialize the pthread library. Initialization is split in two functions: - a constructor function that blocks the __pthread_sig_restart signal (must do this very early, since the program could capture the signal mask with e.g. sigsetjmp before creating the first thread); - a regular function called from pthread_create when needed. */ static void pthread_initialize(void) __attribute__((constructor)); #ifndef HAVE_Z_NODELETE extern void *__dso_handle __attribute__ ((weak)); #endif #if defined USE_TLS && !defined SHARED extern void __libc_setup_tls (size_t tcbsize, size_t tcbalign); #endif struct pthread_functions __pthread_functions = { #if !(USE_TLS && HAVE___THREAD) .ptr_pthread_internal_tsd_set = __pthread_internal_tsd_set, .ptr_pthread_internal_tsd_get = __pthread_internal_tsd_get, .ptr_pthread_internal_tsd_address = __pthread_internal_tsd_address, #endif .ptr_pthread_fork = __pthread_fork, .ptr_pthread_attr_destroy = __pthread_attr_destroy, #if SHLIB_COMPAT(libpthread, GLIBC_2_0, GLIBC_2_1) .ptr___pthread_attr_init_2_0 = __pthread_attr_init_2_0, #endif .ptr___pthread_attr_init_2_1 = __pthread_attr_init_2_1, .ptr_pthread_attr_getdetachstate = __pthread_attr_getdetachstate, .ptr_pthread_attr_setdetachstate = __pthread_attr_setdetachstate, .ptr_pthread_attr_getinheritsched = __pthread_attr_getinheritsched, .ptr_pthread_attr_setinheritsched = __pthread_attr_setinheritsched, .ptr_pthread_attr_getschedparam = __pthread_attr_getschedparam, .ptr_pthread_attr_setschedparam = __pthread_attr_setschedparam, .ptr_pthread_attr_getschedpolicy = __pthread_attr_getschedpolicy, .ptr_pthread_attr_setschedpolicy = __pthread_attr_setschedpolicy, .ptr_pthread_attr_getscope = __pthread_attr_getscope, .ptr_pthread_attr_setscope = __pthread_attr_setscope, .ptr_pthread_condattr_destroy = __pthread_condattr_destroy, .ptr_pthread_condattr_init = __pthread_condattr_init, .ptr___pthread_cond_broadcast = __pthread_cond_broadcast, .ptr___pthread_cond_destroy = __pthread_cond_destroy, .ptr___pthread_cond_init = __pthread_cond_init, .ptr___pthread_cond_signal = __pthread_cond_signal, .ptr___pthread_cond_wait = __pthread_cond_wait, .ptr___pthread_cond_timedwait = __pthread_cond_timedwait, .ptr_pthread_equal = __pthread_equal, .ptr___pthread_exit = __pthread_exit, .ptr_pthread_getschedparam = __pthread_getschedparam, .ptr_pthread_setschedparam = __pthread_setschedparam, .ptr_pthread_mutex_destroy = __pthread_mutex_destroy, .ptr_pthread_mutex_init = __pthread_mutex_init, .ptr_pthread_mutex_lock = __pthread_mutex_lock, .ptr_pthread_mutex_trylock = __pthread_mutex_trylock, .ptr_pthread_mutex_unlock = __pthread_mutex_unlock, .ptr_pthread_self = __pthread_self, .ptr_pthread_setcancelstate = __pthread_setcancelstate, .ptr_pthread_setcanceltype = __pthread_setcanceltype, .ptr_pthread_do_exit = __pthread_do_exit, .ptr_pthread_thread_self = __pthread_thread_self, .ptr_pthread_cleanup_upto = __pthread_cleanup_upto, .ptr_pthread_sigaction = __pthread_sigaction, .ptr_pthread_sigwait = __pthread_sigwait, .ptr_pthread_raise = __pthread_raise, .ptr__pthread_cleanup_push = _pthread_cleanup_push, .ptr__pthread_cleanup_pop = _pthread_cleanup_pop }; #ifdef SHARED # define ptr_pthread_functions &__pthread_functions #else # define ptr_pthread_functions NULL #endif static int *__libc_multiple_threads_ptr; /* Do some minimal initialization which has to be done during the startup of the C library. */ void __pthread_initialize_minimal(void) { #ifdef USE_TLS pthread_descr self; /* First of all init __pthread_handles[0] and [1] if needed. */ # if __LT_SPINLOCK_INIT != 0 __pthread_handles[0].h_lock = __LOCK_INITIALIZER; __pthread_handles[1].h_lock = __LOCK_INITIALIZER; # endif # ifndef SHARED /* Unlike in the dynamically linked case the dynamic linker has not taken care of initializing the TLS data structures. */ __libc_setup_tls (TLS_TCB_SIZE, TLS_TCB_ALIGN); # elif !USE___THREAD if (__builtin_expect (GL(dl_tls_dtv_slotinfo_list) == NULL, 0)) { tcbhead_t *tcbp; /* There is no actual TLS being used, so the thread register was not initialized in the dynamic linker. */ /* We need to install special hooks so that the malloc and memalign calls in _dl_tls_setup and _dl_allocate_tls won't cause full malloc initialization that will try to set up its thread state. */ extern void __libc_malloc_pthread_startup (bool first_time); __libc_malloc_pthread_startup (true); if (__builtin_expect (_dl_tls_setup (), 0) || __builtin_expect ((tcbp = _dl_allocate_tls (NULL)) == NULL, 0)) { static const char msg[] = "\ cannot allocate TLS data structures for initial thread\n"; TEMP_FAILURE_RETRY (write_not_cancel (STDERR_FILENO, msg, sizeof msg - 1)); abort (); } const char *lossage = TLS_INIT_TP (tcbp, 0); if (__builtin_expect (lossage != NULL, 0)) { static const char msg[] = "cannot set up thread-local storage: "; const char nl = '\n'; TEMP_FAILURE_RETRY (write_not_cancel (STDERR_FILENO, msg, sizeof msg - 1)); TEMP_FAILURE_RETRY (write_not_cancel (STDERR_FILENO, lossage, strlen (lossage))); TEMP_FAILURE_RETRY (write_not_cancel (STDERR_FILENO, &nl, 1)); } /* Though it was allocated with libc's malloc, that was done without the user's __malloc_hook installed. A later realloc that uses the hooks might not work with that block from the plain malloc. So we record this block as unfreeable just as the dynamic linker does when it allocates the DTV before the libc malloc exists. */ GL(dl_initial_dtv) = GET_DTV (tcbp); __libc_malloc_pthread_startup (false); } # endif self = THREAD_SELF; /* The memory for the thread descriptor was allocated elsewhere as part of the TLS allocation. We have to initialize the data structure by hand. This initialization must mirror the struct definition above. */ self->p_nextlive = self->p_prevlive = self; self->p_tid = PTHREAD_THREADS_MAX; self->p_lock = &__pthread_handles[0].h_lock; # ifndef HAVE___THREAD self->p_errnop = &_errno; self->p_h_errnop = &_h_errno; # endif /* self->p_start_args need not be initialized, it's all zero. */ self->p_userstack = 1; # if __LT_SPINLOCK_INIT != 0 self->p_resume_count = (struct pthread_atomic) __ATOMIC_INITIALIZER; # endif self->p_alloca_cutoff = __MAX_ALLOCA_CUTOFF; /* Another variable which points to the thread descriptor. */ __pthread_main_thread = self; /* And fill in the pointer the the thread __pthread_handles array. */ __pthread_handles[0].h_descr = self; #else /* USE_TLS */ /* First of all init __pthread_handles[0] and [1]. */ # if __LT_SPINLOCK_INIT != 0 __pthread_handles[0].h_lock = __LOCK_INITIALIZER; __pthread_handles[1].h_lock = __LOCK_INITIALIZER; # endif __pthread_handles[0].h_descr = &__pthread_initial_thread; __pthread_handles[1].h_descr = &__pthread_manager_thread; /* If we have special thread_self processing, initialize that for the main thread now. */ # ifdef INIT_THREAD_SELF INIT_THREAD_SELF(&__pthread_initial_thread, 0); # endif #endif #if HP_TIMING_AVAIL # ifdef USE_TLS self->p_cpuclock_offset = GL(dl_cpuclock_offset); # else __pthread_initial_thread.p_cpuclock_offset = GL(dl_cpuclock_offset); # endif #endif __libc_multiple_threads_ptr = __libc_pthread_init (ptr_pthread_functions); } void __pthread_init_max_stacksize(void) { struct rlimit limit; size_t max_stack; getrlimit(RLIMIT_STACK, &limit); #ifdef FLOATING_STACKS if (limit.rlim_cur == RLIM_INFINITY) limit.rlim_cur = ARCH_STACK_MAX_SIZE; # ifdef NEED_SEPARATE_REGISTER_STACK max_stack = limit.rlim_cur / 2; # else max_stack = limit.rlim_cur; # endif #else /* Play with the stack size limit to make sure that no stack ever grows beyond STACK_SIZE minus one page (to act as a guard page). */ # ifdef NEED_SEPARATE_REGISTER_STACK /* STACK_SIZE bytes hold both the main stack and register backing store. The rlimit value applies to each individually. */ max_stack = STACK_SIZE/2 - __getpagesize (); # else max_stack = STACK_SIZE - __getpagesize(); # endif if (limit.rlim_cur > max_stack) { limit.rlim_cur = max_stack; setrlimit(RLIMIT_STACK, &limit); } #endif __pthread_max_stacksize = max_stack; if (max_stack / 4 < __MAX_ALLOCA_CUTOFF) { #ifdef USE_TLS pthread_descr self = THREAD_SELF; self->p_alloca_cutoff = max_stack / 4; #else __pthread_initial_thread.p_alloca_cutoff = max_stack / 4; #endif } } #ifdef SHARED # if USE___THREAD /* When using __thread for this, we do it in libc so as not to give libpthread its own TLS segment just for this. */ extern void **__libc_dl_error_tsd (void) __attribute__ ((const)); # else static void ** __attribute__ ((const)) __libc_dl_error_tsd (void) { return &thread_self ()->p_libc_specific[_LIBC_TSD_KEY_DL_ERROR]; } # endif #endif #ifdef USE_TLS static inline void __attribute__((always_inline)) init_one_static_tls (pthread_descr descr, struct link_map *map) { # if TLS_TCB_AT_TP dtv_t *dtv = GET_DTV (descr); void *dest = (char *) descr - map->l_tls_offset; # elif TLS_DTV_AT_TP dtv_t *dtv = GET_DTV ((pthread_descr) ((char *) descr + TLS_PRE_TCB_SIZE)); void *dest = (char *) descr + map->l_tls_offset + TLS_PRE_TCB_SIZE; # else # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" # endif /* Fill in the DTV slot so that a later LD/GD access will find it. */ dtv[map->l_tls_modid].pointer = dest; /* Initialize the memory. */ memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size), '\0', map->l_tls_blocksize - map->l_tls_initimage_size); } static void __pthread_init_static_tls (struct link_map *map) { size_t i; for (i = 0; i < PTHREAD_THREADS_MAX; ++i) if (__pthread_handles[i].h_descr != NULL && i != 1) { __pthread_lock (&__pthread_handles[i].h_lock, NULL); if (__pthread_handles[i].h_descr != NULL) init_one_static_tls (__pthread_handles[i].h_descr, map); __pthread_unlock (&__pthread_handles[i].h_lock); } } #endif static void pthread_initialize(void) { struct sigaction sa; sigset_t mask; /* If already done (e.g. by a constructor called earlier!), bail out */ if (__pthread_initial_thread_bos != NULL) return; #ifdef TEST_FOR_COMPARE_AND_SWAP /* Test if compare-and-swap is available */ __pthread_has_cas = compare_and_swap_is_available(); #endif #ifdef FLOATING_STACKS /* We don't need to know the bottom of the stack. Give the pointer some value to signal that initialization happened. */ __pthread_initial_thread_bos = (void *) -1l; #else /* Determine stack size limits . */ __pthread_init_max_stacksize (); # ifdef _STACK_GROWS_UP /* The initial thread already has all the stack it needs */ __pthread_initial_thread_bos = (char *) ((long)CURRENT_STACK_FRAME &~ (STACK_SIZE - 1)); # else /* For the initial stack, reserve at least STACK_SIZE bytes of stack below the current stack address, and align that on a STACK_SIZE boundary. */ __pthread_initial_thread_bos = (char *)(((long)CURRENT_STACK_FRAME - 2 * STACK_SIZE) & ~(STACK_SIZE - 1)); # endif #endif #ifdef USE_TLS /* Update the descriptor for the initial thread. */ THREAD_SETMEM (((pthread_descr) NULL), p_pid, __getpid()); # ifndef HAVE___THREAD /* Likewise for the resolver state _res. */ THREAD_SETMEM (((pthread_descr) NULL), p_resp, &_res); # endif #else /* Update the descriptor for the initial thread. */ __pthread_initial_thread.p_pid = __getpid(); /* Likewise for the resolver state _res. */ __pthread_initial_thread.p_resp = &_res; #endif #if !__ASSUME_REALTIME_SIGNALS /* Initialize real-time signals. */ init_rtsigs (); #endif /* Setup signal handlers for the initial thread. Since signal handlers are shared between threads, these settings will be inherited by all other threads. */ sa.sa_handler = pthread_handle_sigrestart; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; __libc_sigaction(__pthread_sig_restart, &sa, NULL); sa.sa_handler = pthread_handle_sigcancel; // sa.sa_flags = 0; __libc_sigaction(__pthread_sig_cancel, &sa, NULL); if (__pthread_sig_debug > 0) { sa.sa_handler = pthread_handle_sigdebug; sigemptyset(&sa.sa_mask); // sa.sa_flags = 0; __libc_sigaction(__pthread_sig_debug, &sa, NULL); } /* Initially, block __pthread_sig_restart. Will be unblocked on demand. */ sigemptyset(&mask); sigaddset(&mask, __pthread_sig_restart); sigprocmask(SIG_BLOCK, &mask, NULL); /* And unblock __pthread_sig_cancel if it has been blocked. */ sigdelset(&mask, __pthread_sig_restart); sigaddset(&mask, __pthread_sig_cancel); sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Register an exit function to kill all other threads. */ /* Do it early so that user-registered atexit functions are called before pthread_*exit_process. */ #ifndef HAVE_Z_NODELETE if (__builtin_expect (&__dso_handle != NULL, 1)) __cxa_atexit ((void (*) (void *)) pthread_atexit_process, NULL, __dso_handle); else #endif __on_exit (pthread_onexit_process, NULL); /* How many processors. */ __pthread_smp_kernel = is_smp_system (); #ifdef SHARED /* Transfer the old value from the dynamic linker's internal location. */ *__libc_dl_error_tsd () = *(*GL(dl_error_catch_tsd)) (); GL(dl_error_catch_tsd) = &__libc_dl_error_tsd; /* Make __rtld_lock_{,un}lock_recursive use pthread_mutex_{,un}lock, keep the lock count from the ld.so implementation. */ GL(dl_rtld_lock_recursive) = (void *) __pthread_mutex_lock; GL(dl_rtld_unlock_recursive) = (void *) __pthread_mutex_unlock; unsigned int rtld_lock_count = GL(dl_load_lock).mutex.__m_count; GL(dl_load_lock).mutex.__m_count = 0; while (rtld_lock_count-- > 0) __pthread_mutex_lock (&GL(dl_load_lock).mutex); #endif #ifdef USE_TLS GL(dl_init_static_tls) = &__pthread_init_static_tls; #endif } void __pthread_initialize(void) { pthread_initialize(); } int __pthread_initialize_manager(void) { int manager_pipe[2]; int pid; struct pthread_request request; int report_events; pthread_descr mgr; #ifdef USE_TLS tcbhead_t *tcbp; #endif __pthread_multiple_threads = 1; #if TLS_MULTIPLE_THREADS_IN_TCB || !defined USE_TLS || !TLS_DTV_AT_TP __pthread_main_thread->p_multiple_threads = 1; #endif *__libc_multiple_threads_ptr = 1; #ifndef HAVE_Z_NODELETE if (__builtin_expect (&__dso_handle != NULL, 1)) __cxa_atexit ((void (*) (void *)) pthread_atexit_retcode, NULL, __dso_handle); #endif if (__pthread_max_stacksize == 0) __pthread_init_max_stacksize (); /* If basic initialization not done yet (e.g. we're called from a constructor run before our constructor), do it now */ if (__pthread_initial_thread_bos == NULL) pthread_initialize(); /* Setup stack for thread manager */ __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE); if (__pthread_manager_thread_bos == NULL) return -1; __pthread_manager_thread_tos = __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE; /* Setup pipe to communicate with thread manager */ if (pipe(manager_pipe) == -1) { free(__pthread_manager_thread_bos); return -1; } #ifdef USE_TLS /* Allocate memory for the thread descriptor and the dtv. */ tcbp = _dl_allocate_tls (NULL); if (tcbp == NULL) { free(__pthread_manager_thread_bos); close_not_cancel(manager_pipe[0]); close_not_cancel(manager_pipe[1]); return -1; } # if TLS_TCB_AT_TP mgr = (pthread_descr) tcbp; # elif TLS_DTV_AT_TP /* pthread_descr is located right below tcbhead_t which _dl_allocate_tls returns. */ mgr = (pthread_descr) ((char *) tcbp - TLS_PRE_TCB_SIZE); # endif __pthread_handles[1].h_descr = manager_thread = mgr; /* Initialize the descriptor. */ #if !defined USE_TLS || !TLS_DTV_AT_TP mgr->p_header.data.tcb = tcbp; mgr->p_header.data.self = mgr; mgr->p_header.data.multiple_threads = 1; #elif TLS_MULTIPLE_THREADS_IN_TCB mgr->p_multiple_threads = 1; #endif mgr->p_lock = &__pthread_handles[1].h_lock; # ifndef HAVE___THREAD mgr->p_errnop = &mgr->p_errno; # endif mgr->p_start_args = (struct pthread_start_args) PTHREAD_START_ARGS_INITIALIZER(__pthread_manager); mgr->p_nr = 1; # if __LT_SPINLOCK_INIT != 0 self->p_resume_count = (struct pthread_atomic) __ATOMIC_INITIALIZER; # endif mgr->p_alloca_cutoff = PTHREAD_STACK_MIN / 4; #else mgr = &__pthread_manager_thread; #endif __pthread_manager_request = manager_pipe[1]; /* writing end */ __pthread_manager_reader = manager_pipe[0]; /* reading end */ /* Start the thread manager */ pid = 0; #ifdef USE_TLS if (__linuxthreads_initial_report_events != 0) THREAD_SETMEM (((pthread_descr) NULL), p_report_events, __linuxthreads_initial_report_events); report_events = THREAD_GETMEM (((pthread_descr) NULL), p_report_events); #else if (__linuxthreads_initial_report_events != 0) __pthread_initial_thread.p_report_events = __linuxthreads_initial_report_events; report_events = __pthread_initial_thread.p_report_events; #endif if (__builtin_expect (report_events, 0)) { /* It's a bit more complicated. We have to report the creation of the manager thread. */ int idx = __td_eventword (TD_CREATE); uint32_t mask = __td_eventmask (TD_CREATE); uint32_t event_bits; #ifdef USE_TLS event_bits = THREAD_GETMEM_NC (((pthread_descr) NULL), p_eventbuf.eventmask.event_bits[idx]); #else event_bits = __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx]; #endif if ((mask & (__pthread_threads_events.event_bits[idx] | event_bits)) != 0) { __pthread_lock(mgr->p_lock, NULL); #ifdef NEED_SEPARATE_REGISTER_STACK pid = __clone2(__pthread_manager_event, (void **) __pthread_manager_thread_bos, THREAD_MANAGER_STACK_SIZE, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, mgr); #elif _STACK_GROWS_UP pid = __clone(__pthread_manager_event, (void **) __pthread_manager_thread_bos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, mgr); #else pid = __clone(__pthread_manager_event, (void **) __pthread_manager_thread_tos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, mgr); #endif if (pid != -1) { /* Now fill in the information about the new thread in the newly created thread's data structure. We cannot let the new thread do this since we don't know whether it was already scheduled when we send the event. */ mgr->p_eventbuf.eventdata = mgr; mgr->p_eventbuf.eventnum = TD_CREATE; __pthread_last_event = mgr; mgr->p_tid = 2* PTHREAD_THREADS_MAX + 1; mgr->p_pid = pid; /* Now call the function which signals the event. */ __linuxthreads_create_event (); } /* Now restart the thread. */ __pthread_unlock(mgr->p_lock); } } if (__builtin_expect (pid, 0) == 0) { #ifdef NEED_SEPARATE_REGISTER_STACK pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_bos, THREAD_MANAGER_STACK_SIZE, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, mgr); #elif _STACK_GROWS_UP pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_bos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, mgr); #else pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_tos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, mgr); #endif } if (__builtin_expect (pid, 0) == -1) { #ifdef USE_TLS _dl_deallocate_tls (tcbp, true); #endif free(__pthread_manager_thread_bos); close_not_cancel(manager_pipe[0]); close_not_cancel(manager_pipe[1]); return -1; } mgr->p_tid = 2* PTHREAD_THREADS_MAX + 1; mgr->p_pid = pid; /* Make gdb aware of new thread manager */ if (__builtin_expect (__pthread_threads_debug, 0) && __pthread_sig_debug > 0) { raise(__pthread_sig_debug); /* We suspend ourself and gdb will wake us up when it is ready to handle us. */ __pthread_wait_for_restart_signal(thread_self()); } /* Synchronize debugging of the thread manager */ request.req_kind = REQ_DEBUG; TEMP_FAILURE_RETRY(write_not_cancel(__pthread_manager_request, (char *) &request, sizeof(request))); return 0; } /* Thread creation */ int __pthread_create_2_1(pthread_t *thread, const pthread_attr_t *attr, void * (*start_routine)(void *), void *arg) { pthread_descr self = thread_self(); struct pthread_request request; int retval; if (__builtin_expect (__pthread_manager_request, 0) < 0) { if (__pthread_initialize_manager() < 0) return EAGAIN; } request.req_thread = self; request.req_kind = REQ_CREATE; request.req_args.create.attr = attr; request.req_args.create.fn = start_routine; request.req_args.create.arg = arg; sigprocmask(SIG_SETMASK, (const sigset_t *) NULL, &request.req_args.create.mask); TEMP_FAILURE_RETRY(write_not_cancel(__pthread_manager_request, (char *) &request, sizeof(request))); suspend(self); retval = THREAD_GETMEM(self, p_retcode); if (__builtin_expect (retval, 0) == 0) *thread = (pthread_t) THREAD_GETMEM(self, p_retval); return retval; } versioned_symbol (libpthread, __pthread_create_2_1, pthread_create, GLIBC_2_1); #if SHLIB_COMPAT (libpthread, GLIBC_2_0, GLIBC_2_1) int __pthread_create_2_0(pthread_t *thread, const pthread_attr_t *attr, void * (*start_routine)(void *), void *arg) { /* The ATTR attribute is not really of type `pthread_attr_t *'. It has the old size and access to the new members might crash the program. We convert the struct now. */ pthread_attr_t new_attr; if (attr != NULL) { size_t ps = __getpagesize (); memcpy (&new_attr, attr, (size_t) &(((pthread_attr_t*)NULL)->__guardsize)); new_attr.__guardsize = ps; new_attr.__stackaddr_set = 0; new_attr.__stackaddr = NULL; new_attr.__stacksize = STACK_SIZE - ps; attr = &new_attr; } return __pthread_create_2_1 (thread, attr, start_routine, arg); } compat_symbol (libpthread, __pthread_create_2_0, pthread_create, GLIBC_2_0); #endif /* Simple operations on thread identifiers */ pthread_descr __pthread_thread_self(void) { return thread_self(); } pthread_t __pthread_self(void) { pthread_descr self = thread_self(); return THREAD_GETMEM(self, p_tid); } strong_alias (__pthread_self, pthread_self); int __pthread_equal(pthread_t thread1, pthread_t thread2) { return thread1 == thread2; } strong_alias (__pthread_equal, pthread_equal); /* Helper function for thread_self in the case of user-provided stacks */ #ifndef THREAD_SELF pthread_descr __pthread_find_self(void) { char * sp = CURRENT_STACK_FRAME; pthread_handle h; /* __pthread_handles[0] is the initial thread, __pthread_handles[1] is the manager threads handled specially in thread_self(), so start at 2 */ h = __pthread_handles + 2; # ifdef _STACK_GROWS_UP while (! (sp >= (char *) h->h_descr && sp < h->h_descr->p_guardaddr)) h++; # else while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++; # endif return h->h_descr; } #else pthread_descr __pthread_self_stack(void) { char *sp = CURRENT_STACK_FRAME; pthread_handle h; if (sp >= __pthread_manager_thread_bos && sp < __pthread_manager_thread_tos) return manager_thread; h = __pthread_handles + 2; # ifdef USE_TLS # ifdef _STACK_GROWS_UP while (h->h_descr == NULL || ! (sp >= h->h_descr->p_stackaddr && sp < h->h_descr->p_guardaddr)) h++; # else while (h->h_descr == NULL || ! (sp <= (char *) h->h_descr->p_stackaddr && sp >= h->h_bottom)) h++; # endif # else # ifdef _STACK_GROWS_UP while (! (sp >= (char *) h->h_descr && sp < h->h_descr->p_guardaddr)) h++; # else while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++; # endif # endif return h->h_descr; } #endif /* Thread scheduling */ int __pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param) { pthread_handle handle = thread_handle(thread); pthread_descr th; __pthread_lock(&handle->h_lock, NULL); if (__builtin_expect (invalid_handle(handle, thread), 0)) { __pthread_unlock(&handle->h_lock); return ESRCH; } th = handle->h_descr; if (__builtin_expect (__sched_setscheduler(th->p_pid, policy, param) == -1, 0)) { __pthread_unlock(&handle->h_lock); return errno; } th->p_priority = policy == SCHED_OTHER ? 0 : param->sched_priority; __pthread_unlock(&handle->h_lock); if (__pthread_manager_request >= 0) __pthread_manager_adjust_prio(th->p_priority); return 0; } strong_alias (__pthread_setschedparam, pthread_setschedparam); int __pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param) { pthread_handle handle = thread_handle(thread); int pid, pol; __pthread_lock(&handle->h_lock, NULL); if (__builtin_expect (invalid_handle(handle, thread), 0)) { __pthread_unlock(&handle->h_lock); return ESRCH; } pid = handle->h_descr->p_pid; __pthread_unlock(&handle->h_lock); pol = __sched_getscheduler(pid); if (__builtin_expect (pol, 0) == -1) return errno; if (__sched_getparam(pid, param) == -1) return errno; *policy = pol; return 0; } strong_alias (__pthread_getschedparam, pthread_getschedparam); int __pthread_yield (void) { /* For now this is equivalent with the POSIX call. */ return sched_yield (); } weak_alias (__pthread_yield, pthread_yield) /* Process-wide exit() request */ static void pthread_onexit_process(int retcode, void *arg) { if (__builtin_expect (__pthread_manager_request, 0) >= 0) { struct pthread_request request; pthread_descr self = thread_self(); request.req_thread = self; request.req_kind = REQ_PROCESS_EXIT; request.req_args.exit.code = retcode; TEMP_FAILURE_RETRY(write_not_cancel(__pthread_manager_request, (char *) &request, sizeof(request))); suspend(self); /* Main thread should accumulate times for thread manager and its children, so that timings for main thread account for all threads. */ if (self == __pthread_main_thread) { #ifdef USE_TLS waitpid(manager_thread->p_pid, NULL, __WCLONE); #else waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE); #endif /* Since all threads have been asynchronously terminated (possibly holding locks), free cannot be used any more. For mtrace, we'd like to print something though. */ /* #ifdef USE_TLS tcbhead_t *tcbp = (tcbhead_t *) manager_thread; # if TLS_DTV_AT_TP tcbp = (tcbhead_t) ((char *) tcbp + TLS_PRE_TCB_SIZE); # endif _dl_deallocate_tls (tcbp, true); #endif free (__pthread_manager_thread_bos); */ __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL; } } } #ifndef HAVE_Z_NODELETE static int __pthread_atexit_retcode; static void pthread_atexit_process(void *arg, int retcode) { pthread_onexit_process (retcode ?: __pthread_atexit_retcode, arg); } static void pthread_atexit_retcode(void *arg, int retcode) { __pthread_atexit_retcode = retcode; } #endif /* The handler for the RESTART signal just records the signal received in the thread descriptor, and optionally performs a siglongjmp (for pthread_cond_timedwait). */ static void pthread_handle_sigrestart(int sig) { pthread_descr self = check_thread_self(); THREAD_SETMEM(self, p_signal, sig); if (THREAD_GETMEM(self, p_signal_jmp) != NULL) siglongjmp(*THREAD_GETMEM(self, p_signal_jmp), 1); } /* The handler for the CANCEL signal checks for cancellation (in asynchronous mode), for process-wide exit and exec requests. For the thread manager thread, redirect the signal to __pthread_manager_sighandler. */ static void pthread_handle_sigcancel(int sig) { pthread_descr self = check_thread_self(); sigjmp_buf * jmpbuf; if (self == manager_thread) { __pthread_manager_sighandler(sig); return; } if (__builtin_expect (__pthread_exit_requested, 0)) { /* Main thread should accumulate times for thread manager and its children, so that timings for main thread account for all threads. */ if (self == __pthread_main_thread) { #ifdef USE_TLS waitpid(manager_thread->p_pid, NULL, __WCLONE); #else waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE); #endif } _exit(__pthread_exit_code); } if (__builtin_expect (THREAD_GETMEM(self, p_canceled), 0) && THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE) { if (THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS) __pthread_do_exit(PTHREAD_CANCELED, CURRENT_STACK_FRAME); jmpbuf = THREAD_GETMEM(self, p_cancel_jmp); if (jmpbuf != NULL) { THREAD_SETMEM(self, p_cancel_jmp, NULL); siglongjmp(*jmpbuf, 1); } } } /* Handler for the DEBUG signal. The debugging strategy is as follows: On reception of a REQ_DEBUG request (sent by new threads created to the thread manager under debugging mode), the thread manager throws __pthread_sig_debug to itself. The debugger (if active) intercepts this signal, takes into account new threads and continue execution of the thread manager by propagating the signal because it doesn't know what it is specifically done for. In the current implementation, the thread manager simply discards it. */ static void pthread_handle_sigdebug(int sig) { /* Nothing */ } /* Reset the state of the thread machinery after a fork(). Close the pipe used for requests and set the main thread to the forked thread. Notice that we can't free the stack segments, as the forked thread may hold pointers into them. */ void __pthread_reset_main_thread(void) { pthread_descr self = thread_self(); if (__pthread_manager_request != -1) { /* Free the thread manager stack */ free(__pthread_manager_thread_bos); __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL; /* Close the two ends of the pipe */ close_not_cancel(__pthread_manager_request); close_not_cancel(__pthread_manager_reader); __pthread_manager_request = __pthread_manager_reader = -1; } /* Update the pid of the main thread */ THREAD_SETMEM(self, p_pid, __getpid()); /* Make the forked thread the main thread */ __pthread_main_thread = self; THREAD_SETMEM(self, p_nextlive, self); THREAD_SETMEM(self, p_prevlive, self); #if !(USE_TLS && HAVE___THREAD) /* Now this thread modifies the global variables. */ THREAD_SETMEM(self, p_errnop, &_errno); THREAD_SETMEM(self, p_h_errnop, &_h_errno); THREAD_SETMEM(self, p_resp, &_res); #endif #ifndef FLOATING_STACKS /* This is to undo the setrlimit call in __pthread_init_max_stacksize. XXX This can be wrong if the user set the limit during the run. */ { struct rlimit limit; if (getrlimit (RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != limit.rlim_max) { limit.rlim_cur = limit.rlim_max; setrlimit(RLIMIT_STACK, &limit); } } #endif } /* Process-wide exec() request */ void __pthread_kill_other_threads_np(void) { struct sigaction sa; /* Terminate all other threads and thread manager */ pthread_onexit_process(0, NULL); /* Make current thread the main thread in case the calling thread changes its mind, does not exec(), and creates new threads instead. */ __pthread_reset_main_thread(); /* Reset the signal handlers behaviour for the signals the implementation uses since this would be passed to the new process. */ sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = SIG_DFL; __libc_sigaction(__pthread_sig_restart, &sa, NULL); __libc_sigaction(__pthread_sig_cancel, &sa, NULL); if (__pthread_sig_debug > 0) __libc_sigaction(__pthread_sig_debug, &sa, NULL); } weak_alias (__pthread_kill_other_threads_np, pthread_kill_other_threads_np) /* Concurrency symbol level. */ static int current_level; int __pthread_setconcurrency(int level) { /* We don't do anything unless we have found a useful interpretation. */ current_level = level; return 0; } weak_alias (__pthread_setconcurrency, pthread_setconcurrency) int __pthread_getconcurrency(void) { return current_level; } weak_alias (__pthread_getconcurrency, pthread_getconcurrency) /* Primitives for controlling thread execution */ void __pthread_wait_for_restart_signal(pthread_descr self) { sigset_t mask; sigprocmask(SIG_SETMASK, NULL, &mask); /* Get current signal mask */ sigdelset(&mask, __pthread_sig_restart); /* Unblock the restart signal */ THREAD_SETMEM(self, p_signal, 0); do { __pthread_sigsuspend(&mask); /* Wait for signal. Must not be a cancellation point. */ } while (THREAD_GETMEM(self, p_signal) !=__pthread_sig_restart); READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */ } #if !__ASSUME_REALTIME_SIGNALS /* The _old variants are for 2.0 and early 2.1 kernels which don't have RT signals. On these kernels, we use SIGUSR1 and SIGUSR2 for restart and cancellation. Since the restart signal does not queue, we use an atomic counter to create queuing semantics. This is needed to resolve a rare race condition in pthread_cond_timedwait_relative. */ void __pthread_restart_old(pthread_descr th) { if (atomic_increment(&th->p_resume_count) == -1) kill(th->p_pid, __pthread_sig_restart); } void __pthread_suspend_old(pthread_descr self) { if (atomic_decrement(&self->p_resume_count) <= 0) __pthread_wait_for_restart_signal(self); } int __pthread_timedsuspend_old(pthread_descr self, const struct timespec *abstime) { sigset_t unblock, initial_mask; int was_signalled = 0; sigjmp_buf jmpbuf; if (atomic_decrement(&self->p_resume_count) == 0) { /* Set up a longjmp handler for the restart signal, unblock the signal and sleep. */ if (sigsetjmp(jmpbuf, 1) == 0) { THREAD_SETMEM(self, p_signal_jmp, &jmpbuf); THREAD_SETMEM(self, p_signal, 0); /* Unblock the restart signal */ sigemptyset(&unblock); sigaddset(&unblock, __pthread_sig_restart); sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask); while (1) { struct timeval now; struct timespec reltime; /* Compute a time offset relative to now. */ __gettimeofday (&now, NULL); reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000; reltime.tv_sec = abstime->tv_sec - now.tv_sec; if (reltime.tv_nsec < 0) { reltime.tv_nsec += 1000000000; reltime.tv_sec -= 1; } /* Sleep for the required duration. If woken by a signal, resume waiting as required by Single Unix Specification. */ if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0) break; } /* Block the restart signal again */ sigprocmask(SIG_SETMASK, &initial_mask, NULL); was_signalled = 0; } else { was_signalled = 1; } THREAD_SETMEM(self, p_signal_jmp, NULL); } /* Now was_signalled is true if we exited the above code due to the delivery of a restart signal. In that case, we know we have been dequeued and resumed and that the resume count is balanced. Otherwise, there are some cases to consider. First, try to bump up the resume count back to zero. If it goes to 1, it means restart() was invoked on this thread. The signal must be consumed and the count bumped down and everything is cool. We can return a 1 to the caller. Otherwise, no restart was delivered yet, so a potential race exists; we return a 0 to the caller which must deal with this race in an appropriate way; for example by atomically removing the thread from consideration for a wakeup---if such a thing fails, it means a restart is being delivered. */ if (!was_signalled) { if (atomic_increment(&self->p_resume_count) != -1) { __pthread_wait_for_restart_signal(self); atomic_decrement(&self->p_resume_count); /* should be zero now! */ /* woke spontaneously and consumed restart signal */ return 1; } /* woke spontaneously but did not consume restart---caller must resolve */ return 0; } /* woken due to restart signal */ return 1; } #endif /* __ASSUME_REALTIME_SIGNALS */ void __pthread_restart_new(pthread_descr th) { /* The barrier is proabably not needed, in which case it still documents our assumptions. The intent is to commit previous writes to shared memory so the woken thread will have a consistent view. Complementary read barriers are present to the suspend functions. */ WRITE_MEMORY_BARRIER(); kill(th->p_pid, __pthread_sig_restart); } /* There is no __pthread_suspend_new because it would just be a wasteful wrapper for __pthread_wait_for_restart_signal */ int __pthread_timedsuspend_new(pthread_descr self, const struct timespec *abstime) { sigset_t unblock, initial_mask; int was_signalled = 0; sigjmp_buf jmpbuf; if (sigsetjmp(jmpbuf, 1) == 0) { THREAD_SETMEM(self, p_signal_jmp, &jmpbuf); THREAD_SETMEM(self, p_signal, 0); /* Unblock the restart signal */ sigemptyset(&unblock); sigaddset(&unblock, __pthread_sig_restart); sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask); while (1) { struct timeval now; struct timespec reltime; /* Compute a time offset relative to now. */ __gettimeofday (&now, NULL); reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000; reltime.tv_sec = abstime->tv_sec - now.tv_sec; if (reltime.tv_nsec < 0) { reltime.tv_nsec += 1000000000; reltime.tv_sec -= 1; } /* Sleep for the required duration. If woken by a signal, resume waiting as required by Single Unix Specification. */ if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0) break; } /* Block the restart signal again */ sigprocmask(SIG_SETMASK, &initial_mask, NULL); was_signalled = 0; } else { was_signalled = 1; } THREAD_SETMEM(self, p_signal_jmp, NULL); /* Now was_signalled is true if we exited the above code due to the delivery of a restart signal. In that case, everything is cool. We have been removed from whatever we were waiting on by the other thread, and consumed its signal. Otherwise we this thread woke up spontaneously, or due to a signal other than restart. This is an ambiguous case that must be resolved by the caller; the thread is still eligible for a restart wakeup so there is a race. */ READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */ return was_signalled; } /* Debugging aid */ #ifdef DEBUG #include void __pthread_message(const char * fmt, ...) { char buffer[1024]; va_list args; sprintf(buffer, "%05d : ", __getpid()); va_start(args, fmt); vsnprintf(buffer + 8, sizeof(buffer) - 8, fmt, args); va_end(args); TEMP_FAILURE_RETRY(write_not_cancel(2, buffer, strlen(buffer))); } #endif