/* Guts of both `select' and `poll' for Hurd. Copyright (C) 1991-2014 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include #include #include #include #include /* All user select types. */ #define SELECT_ALL (SELECT_READ | SELECT_WRITE | SELECT_URG) /* Used to record that a particular select rpc returned. Must be distinct from SELECT_ALL (which better not have the high bit set). */ #define SELECT_RETURNED ((SELECT_ALL << 1) & ~SELECT_ALL) #define SELECT_ERROR (SELECT_RETURNED << 1) /* Check the first NFDS descriptors either in POLLFDS (if nonnnull) or in each of READFDS, WRITEFDS, EXCEPTFDS that is nonnull. If TIMEOUT is not NULL, time out after waiting the interval specified therein. Returns the number of ready descriptors, or -1 for errors. */ int _hurd_select (int nfds, struct pollfd *pollfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, const struct timespec *timeout, const sigset_t *sigmask) { int i; mach_port_t portset; int got, ready; error_t err; fd_set rfds, wfds, xfds; int firstfd, lastfd; mach_msg_id_t reply_msgid; mach_msg_timeout_t to; struct timespec ts; struct { struct hurd_userlink ulink; struct hurd_fd *cell; mach_port_t io_port; int type; mach_port_t reply_port; int error; } d[nfds]; sigset_t oset; union typeword /* Use this to avoid unkosher casts. */ { mach_msg_type_t type; uint32_t word; }; assert (sizeof (union typeword) == sizeof (mach_msg_type_t)); assert (sizeof (uint32_t) == sizeof (mach_msg_type_t)); if (nfds < 0 || (!pollfds && nfds > FD_SETSIZE)) { errno = EINVAL; return -1; } #define IO_SELECT_REPLY_MSGID (21012 + 100) /* XXX */ #define IO_SELECT_TIMEOUT_REPLY_MSGID (21031 + 100) /* XXX */ if (timeout == NULL) reply_msgid = IO_SELECT_REPLY_MSGID; else { struct timeval now; if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || timeout->tv_nsec >= 1000000000) { errno = EINVAL; return -1; } err = __gettimeofday(&now, NULL); if (err) return -1; ts.tv_sec = now.tv_sec + timeout->tv_sec; ts.tv_nsec = now.tv_usec * 1000 + timeout->tv_nsec; if (ts.tv_nsec >= 1000000000) { ts.tv_sec++; ts.tv_nsec -= 1000000000; } if (ts.tv_sec < 0) ts.tv_sec = LONG_MAX; /* XXX */ reply_msgid = IO_SELECT_TIMEOUT_REPLY_MSGID; } if (sigmask && __sigprocmask (SIG_SETMASK, sigmask, &oset)) return -1; if (pollfds) { /* Collect interesting descriptors from the user's `pollfd' array. We do a first pass that reads the user's array before taking any locks. The second pass then only touches our own stack, and gets the port references. */ for (i = 0; i < nfds; ++i) if (pollfds[i].fd >= 0) { int type = 0; if (pollfds[i].events & POLLIN) type |= SELECT_READ; if (pollfds[i].events & POLLOUT) type |= SELECT_WRITE; if (pollfds[i].events & POLLPRI) type |= SELECT_URG; d[i].io_port = pollfds[i].fd; d[i].type = type; } else d[i].type = 0; HURD_CRITICAL_BEGIN; __mutex_lock (&_hurd_dtable_lock); for (i = 0; i < nfds; ++i) if (d[i].type != 0) { const int fd = (int) d[i].io_port; if (fd < _hurd_dtablesize) { d[i].cell = _hurd_dtable[fd]; d[i].io_port = _hurd_port_get (&d[i].cell->port, &d[i].ulink); if (d[i].io_port != MACH_PORT_NULL) continue; } /* Bogus descriptor, make it EBADF already. */ d[i].error = EBADF; d[i].type = SELECT_ERROR; /* And set timeout to 0. */ { struct timeval now; err = __gettimeofday(&now, NULL); if (err) { err = errno; while (i-- > 0) if (d[i].type & ~SELECT_ERROR != 0) _hurd_port_free (&d[i].cell->port, &d[i].ulink, d[i].io_port); errno = err; return -1; } ts.tv_sec = now.tv_sec; ts.tv_nsec = now.tv_usec * 1000; reply_msgid = IO_SELECT_TIMEOUT_REPLY_MSGID; } } __mutex_unlock (&_hurd_dtable_lock); HURD_CRITICAL_END; lastfd = i - 1; firstfd = i == 0 ? lastfd : 0; } else { /* Collect interested descriptors from the user's fd_set arguments. Use local copies so we can't crash from user bogosity. */ if (readfds == NULL) FD_ZERO (&rfds); else rfds = *readfds; if (writefds == NULL) FD_ZERO (&wfds); else wfds = *writefds; if (exceptfds == NULL) FD_ZERO (&xfds); else xfds = *exceptfds; HURD_CRITICAL_BEGIN; __mutex_lock (&_hurd_dtable_lock); /* Collect the ports for interesting FDs. */ firstfd = lastfd = -1; for (i = 0; i < nfds; ++i) { int type = 0; if (readfds != NULL && FD_ISSET (i, &rfds)) type |= SELECT_READ; if (writefds != NULL && FD_ISSET (i, &wfds)) type |= SELECT_WRITE; if (exceptfds != NULL && FD_ISSET (i, &xfds)) type |= SELECT_URG; d[i].type = type; if (type) { if (i < _hurd_dtablesize) { d[i].cell = _hurd_dtable[i]; d[i].io_port = _hurd_port_get (&d[i].cell->port, &d[i].ulink); } if (i >= _hurd_dtablesize || d[i].io_port == MACH_PORT_NULL) { /* If one descriptor is bogus, we fail completely. */ while (i-- > 0) if (d[i].type != 0) _hurd_port_free (&d[i].cell->port, &d[i].ulink, d[i].io_port); break; } lastfd = i; if (firstfd == -1) firstfd = i; } } __mutex_unlock (&_hurd_dtable_lock); HURD_CRITICAL_END; if (i < nfds) { if (sigmask) __sigprocmask (SIG_SETMASK, &oset, NULL); errno = EBADF; return -1; } if (nfds > _hurd_dtablesize) nfds = _hurd_dtablesize; } err = 0; got = 0; /* Send them all io_select request messages. */ if (firstfd == -1) /* But not if there were no ports to deal with at all. We are just a pure timeout. */ portset = __mach_reply_port (); else { portset = MACH_PORT_NULL; for (i = firstfd; i <= lastfd; ++i) if (d[i].type & ~SELECT_ERROR) { int type = d[i].type; d[i].reply_port = __mach_reply_port (); if (timeout == NULL) err = __io_select_request (d[i].io_port, d[i].reply_port, type); else err = __io_select_timeout_request (d[i].io_port, d[i].reply_port, ts, type); if (!err) { if (firstfd == lastfd) /* When there's a single descriptor, we don't need a portset, so just pretend we have one, but really use the single reply port. */ portset = d[i].reply_port; else if (got == 0) /* We've got multiple reply ports, so we need a port set to multiplex them. */ { /* We will wait again for a reply later. */ if (portset == MACH_PORT_NULL) /* Create the portset to receive all the replies on. */ err = __mach_port_allocate (__mach_task_self (), MACH_PORT_RIGHT_PORT_SET, &portset); if (! err) /* Put this reply port in the port set. */ __mach_port_move_member (__mach_task_self (), d[i].reply_port, portset); } } else { /* No error should happen, but record it for later processing. */ d[i].error = err; d[i].type |= SELECT_ERROR; ++got; } _hurd_port_free (&d[i].cell->port, &d[i].ulink, d[i].io_port); } } /* GOT is the number of replies (or errors), while READY is the number of replies with at least one type bit set. */ ready = 0; /* Now wait for reply messages. */ if (!err && got == 0) { /* Now wait for io_select_reply messages on PORT, timing out as appropriate. */ union { mach_msg_header_t head; #ifdef MACH_MSG_TRAILER_MINIMUM_SIZE struct { mach_msg_header_t head; NDR_record_t ndr; error_t err; } error; struct { mach_msg_header_t head; NDR_record_t ndr; error_t err; int result; mach_msg_trailer_t trailer; } success; #else struct { mach_msg_header_t head; union typeword err_type; error_t err; } error; struct { mach_msg_header_t head; union typeword err_type; error_t err; union typeword result_type; int result; } success; #endif } msg; mach_msg_option_t options; error_t msgerr; /* We rely on servers to implement the timeout, but when there are none, do it on the client side. */ if (timeout != NULL && firstfd == -1) { options = MACH_RCV_TIMEOUT; to = timeout->tv_sec * 1000 + (timeout->tv_nsec + 999999) / 1000000; } else { options = 0; to = MACH_MSG_TIMEOUT_NONE; } while ((msgerr = __mach_msg (&msg.head, MACH_RCV_MSG | MACH_RCV_INTERRUPT | options, 0, sizeof msg, portset, to, MACH_PORT_NULL)) == MACH_MSG_SUCCESS) { /* We got a message. Decode it. */ #ifdef MACH_MSG_TYPE_BIT const union typeword inttype = { type: { MACH_MSG_TYPE_INTEGER_T, sizeof (integer_t) * 8, 1, 1, 0, 0 } }; #endif if (msg.head.msgh_id == reply_msgid && msg.head.msgh_size >= sizeof msg.error && !(msg.head.msgh_bits & MACH_MSGH_BITS_COMPLEX) && #ifdef MACH_MSG_TYPE_BIT msg.error.err_type.word == inttype.word #endif ) { /* This is a properly formatted message so far. See if it is a success or a failure. */ if (msg.error.err == EINTR && msg.head.msgh_size == sizeof msg.error) { /* EINTR response; poll for further responses and then return quickly. */ err = EINTR; goto poll; } /* Keep in mind msg.success.result can be 0 if a timeout occurred. */ if (msg.error.err || #ifdef MACH_MSG_TYPE_BIT msg.success.result_type.word != inttype.word || #endif msg.head.msgh_size != sizeof msg.success) { /* Error or bogus reply. */ if (!msg.error.err) msg.error.err = EIO; __mach_msg_destroy (&msg.head); } /* Look up the respondent's reply port and record its readiness. */ { int had = got; if (firstfd != -1) for (i = firstfd; i <= lastfd; ++i) if (d[i].type && d[i].reply_port == msg.head.msgh_local_port) { if (msg.error.err) { d[i].error = msg.error.err; d[i].type = SELECT_ERROR; ++ready; } else { d[i].type &= msg.success.result; if (d[i].type) ++ready; } d[i].type |= SELECT_RETURNED; ++got; } assert (got > had); } } if (msg.head.msgh_remote_port != MACH_PORT_NULL) __mach_port_deallocate (__mach_task_self (), msg.head.msgh_remote_port); if (got) poll: { /* Poll for another message. */ to = 0; options |= MACH_RCV_TIMEOUT; } } if (msgerr == MACH_RCV_INTERRUPTED) /* Interruption on our side (e.g. signal reception). */ err = EINTR; if (ready) /* At least one descriptor is known to be ready now, so we will return success. */ err = 0; } if (firstfd != -1) for (i = firstfd; i <= lastfd; ++i) if (d[i].type & ~SELECT_ERROR) __mach_port_destroy (__mach_task_self (), d[i].reply_port); if (firstfd == -1 || (firstfd != lastfd && portset != MACH_PORT_NULL)) /* Destroy PORTSET, but only if it's not actually the reply port for a single descriptor (in which case it's destroyed in the previous loop; not doing it here is just a bit more efficient). */ __mach_port_destroy (__mach_task_self (), portset); if (err) { if (sigmask) __sigprocmask (SIG_SETMASK, &oset, NULL); return __hurd_fail (err); } if (pollfds) /* Fill in the `revents' members of the user's array. */ for (i = 0; i < nfds; ++i) { int type = d[i].type; int_fast16_t revents = 0; if (type & SELECT_ERROR) switch (d[i].error) { case EPIPE: revents = POLLHUP; break; case EBADF: revents = POLLNVAL; break; default: revents = POLLERR; break; } else if (type & SELECT_RETURNED) { if (type & SELECT_READ) revents |= POLLIN; if (type & SELECT_WRITE) revents |= POLLOUT; if (type & SELECT_URG) revents |= POLLPRI; } pollfds[i].revents = revents; } else { /* Below we recalculate READY to include an increment for each operation allowed on each fd. */ ready = 0; /* Set the user bitarrays. We only ever have to clear bits, as all desired ones are initially set. */ if (firstfd != -1) for (i = firstfd; i <= lastfd; ++i) { int type = d[i].type; if ((type & SELECT_RETURNED) == 0) type = 0; /* Callers of select don't expect to see errors, so we simulate readiness of the erring object and the next call hopefully will get the error again. */ if (type & SELECT_ERROR) { type = 0; if (readfds != NULL && FD_ISSET (i, readfds)) type |= SELECT_READ; if (writefds != NULL && FD_ISSET (i, writefds)) type |= SELECT_WRITE; if (exceptfds != NULL && FD_ISSET (i, exceptfds)) type |= SELECT_URG; } if (type & SELECT_READ) ready++; else if (readfds) FD_CLR (i, readfds); if (type & SELECT_WRITE) ready++; else if (writefds) FD_CLR (i, writefds); if (type & SELECT_URG) ready++; else if (exceptfds) FD_CLR (i, exceptfds); } } if (sigmask && __sigprocmask (SIG_SETMASK, &oset, NULL)) return -1; return ready; }