/* Profiling of shared libraries. Copyright (C) 1997 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include /* The LD_PROFILE feature has to be implemented different to the normal profiling using the gmon/ functions. The problem is that an arbitrary amount of processes simulataneously can be run using profiling and all write the results in the same file. To provide this mechanism one could implement a complicated mechanism to merge the content of two profiling runs or one could extend the file format to allow more than one data set. For the second solution we would have the problem that the file can grow in size beyond any limit and both solutions have the problem that the concurrency of writing the results is a big problem. Another much simpler method is to use mmap to map the same file in all using programs and modify the data in the mmap'ed area and so also automatically on the disk. Using the MAP_SHARED option of mmap(2) this can be done without big problems in more than one file. This approach is very different from the normal profiling. We have to use the profiling data in exactly the way they are expected to be written to disk. But the normal format used by gprof is not usable to do this. It is optimized for size. It writes the tags as single bytes but this means that the following 32/64 bit values are unaligned. Therefore we use a new format. This will look like this 0 1 2 3 <- byte is 32 bit word 0000 g m o n 0004 *version* <- GMON_SHOBJ_VERSION 0008 00 00 00 00 000c 00 00 00 00 0010 00 00 00 00 0014 *tag* <- GMON_TAG_TIME_HIST 0018 ?? ?? ?? ?? ?? ?? ?? ?? <- 32/64 bit LowPC 0018+A ?? ?? ?? ?? ?? ?? ?? ?? <- 32/64 bit HighPC 0018+2*A *histsize* 001c+2*A *profrate* 0020+2*A s e c o 0024+2*A n d s \0 0028+2*A \0 \0 \0 \0 002c+2*A \0 \0 \0 002f+2*A s 0030+2*A ?? ?? ?? ?? <- Count data ... ... 0030+2*A+K ?? ?? ?? ?? 0030+2*A+K *tag* <- GMON_TAG_CG_ARC 0034+2*A+K *lastused* 0038+2*A+K ?? ?? ?? ?? ?? ?? ?? ?? <- FromPC#1 0038+3*A+K ?? ?? ?? ?? ?? ?? ?? ?? <- ToPC#1 0038+4*A+K ?? ?? ?? ?? <- Count#1 ... ... ... 0038+(2*(CN-1)+2)*A+(CN-1)*4+K ?? ?? ?? ?? ?? ?? ?? ?? <- FromPC#CGN 0038+(2*(CN-1)+3)*A+(CN-1)*4+K ?? ?? ?? ?? ?? ?? ?? ?? <- ToPC#CGN 0038+(2*CN+2)*A+(CN-1)*4+K ?? ?? ?? ?? <- Count#CGN We put (for now? no basic block information in the file since this would introduce rase conditions among all the processes who want to write them. `K' is the number of count entries which is computed as textsize / HISTFRACTION `CG' in the above table is the number of call graph arcs. Normally, the table is sparse and the profiling code writes out only the those entries which are really used in the program run. But since we must not extend this table (the profiling file) we'll keep them all here. So CN can be executed in advance as MINARCS <= textsize*(ARCDENSITY/100) <= MAXARCS Now the remaining question is: how to build the data structures we can work with from this data. We need the from set and must associate the froms with all the associated tos. We will do this by constructing this data structures at the program start. To do this we'll simply visit all entries in the call graph table and add it to the appropriate list. */ extern char *_strerror_internal __P ((int, char *buf, size_t)); extern int __profile_frequency __P ((void)); /* We define a special type to address the elements of the arc table. This is basically the `gmon_cg_arc_record' format but it includes the room for the tag and it uses real types. */ struct here_cg_arc_record { uintptr_t from_pc; uintptr_t self_pc; uint32_t count; } __attribute__ ((packed)); static struct here_cg_arc_record *data; /* This is the number of entry which have been incorporated in the toset. */ static uint32_t narcs; /* This is a pointer to the object representing the number of entries currently in the mmaped file. At no point of time this has to be the same as NARCS. If it is equal all entries from the file are in our lists. */ static uint32_t *narcsp; /* Description of the currently profiled object. */ static long int state; static volatile uint16_t *kcount; static size_t kcountsize; struct here_tostruct { struct here_cg_arc_record volatile *here; uint16_t link; }; static uint16_t *froms; static size_t fromssize; static struct here_tostruct *tos; static size_t tossize; static size_t tolimit; static size_t toidx; static uintptr_t lowpc; static uintptr_t highpc; static size_t textsize; static unsigned int hashfraction; static unsigned int log_hashfraction; /* This is the information about the mmaped memory. */ static struct gmon_hdr *addr; static off_t expected_size; /* Set up profiling data to profile object desribed by MAP. The output file is found (or created) in OUTPUT_DIR. */ void _dl_start_profile (struct link_map *map, const char *output_dir) { char *filename; int fd; struct stat st; const ElfW(Phdr) *ph; ElfW(Addr) mapstart = ~((ElfW(Addr)) 0); ElfW(Addr) mapend = 0; struct gmon_hdr gmon_hdr; struct gmon_hist_hdr hist_hdr; char *hist; size_t idx; /* Compute the size of the sections which contain program code. */ for (ph = map->l_phdr; ph < &map->l_phdr[map->l_phnum]; ++ph) if (ph->p_type == PT_LOAD && (ph->p_flags & PF_X)) { ElfW(Addr) start = (ph->p_vaddr & ~(_dl_pagesize - 1)); ElfW(Addr) end = ((ph->p_vaddr + ph->p_memsz + _dl_pagesize - 1) & ~(_dl_pagesize - 1)); if (start < mapstart) mapstart = start; if (end > mapend) mapend = end; } /* Now we can compute the size of the profiling data. This is done with the same formulars as in `monstartup' (see gmon.c). */ state = GMON_PROF_OFF; lowpc = ROUNDDOWN (mapstart + map->l_addr, HISTFRACTION * sizeof(HISTCOUNTER)); highpc = ROUNDUP (mapend + map->l_addr, HISTFRACTION * sizeof(HISTCOUNTER)); textsize = highpc - lowpc; kcountsize = textsize / HISTFRACTION; hashfraction = HASHFRACTION; if ((HASHFRACTION & (HASHFRACTION - 1)) == 0) /* If HASHFRACTION is a power of two, mcount can use shifting instead of integer division. Precompute shift amount. */ log_hashfraction = __builtin_ffs (hashfraction * sizeof (*froms)) - 1; else log_hashfraction = -1; fromssize = textsize / HASHFRACTION; tolimit = textsize * ARCDENSITY / 100; if (tolimit < MINARCS) tolimit = MINARCS; if (tolimit > MAXARCS) tolimit = MAXARCS; tossize = tolimit * sizeof (struct here_tostruct); expected_size = (sizeof (struct gmon_hdr) + 4 + sizeof (struct gmon_hist_hdr) + kcountsize + 4 + 4 + tossize * sizeof (struct here_cg_arc_record)); /* Create the gmon_hdr we expect or write. */ memset (&gmon_hdr, '\0', sizeof (struct gmon_hdr)); memcpy (&gmon_hdr.cookie[0], GMON_MAGIC, sizeof (gmon_hdr.cookie)); *(int32_t *) gmon_hdr.version = GMON_SHOBJ_VERSION; /* Create the hist_hdr we expect or write. */ *(char **) hist_hdr.low_pc = (char *) mapstart; *(char **) hist_hdr.high_pc = (char *) mapend; *(int32_t *) hist_hdr.hist_size = kcountsize / sizeof (HISTCOUNTER); *(int32_t *) hist_hdr.prof_rate = __profile_frequency (); strncpy (hist_hdr.dimen, "seconds", sizeof (hist_hdr.dimen)); hist_hdr.dimen_abbrev = 's'; /* First determine the output name. We write in the directory OUTPUT_DIR and the name is composed from the shared objects soname (or the file name) and the ending ".profile". */ filename = (char *) alloca (strlen (output_dir) + 1 + strlen (_dl_profile) + sizeof ".profile"); __stpcpy (__stpcpy (__stpcpy (__stpcpy (filename, output_dir), "/"), _dl_profile), ".profile"); fd = __open (filename, O_RDWR | O_CREAT, 0666); if (fd == -1) /* We cannot write the profiling data so don't do anthing. */ return; if (fstat (fd, &st) < 0 || !S_ISREG (st.st_mode)) { /* Not stat'able or not a regular file => don't use it. */ close (fd); return; } /* Test the size. If it does not match what we expect from the size values in the map MAP we don't use it and warn the user. */ if (st.st_size == 0) { /* We have to create the file. */ char buf[_dl_pagesize]; memset (buf, '\0', _dl_pagesize); if (__lseek (fd, expected_size & ~(_dl_pagesize - 1), SEEK_SET) == -1) { char buf[400]; int errnum; cannot_create: errnum = errno; __close (fd); _dl_sysdep_error (filename, ": cannot create file: ", _strerror_internal (errnum, buf, sizeof buf), "\n", NULL); return; } if (TEMP_FAILURE_RETRY (__write (fd, buf, (expected_size & (_dl_pagesize - 1)))) < 0) goto cannot_create; } else if (st.st_size != expected_size) { __close (fd); wrong_format: if (addr != NULL) __munmap ((void *) addr, expected_size); _dl_sysdep_error (filename, ": file is no correct profile data file for `", _dl_profile, "'\n", NULL); return; } addr = (struct gmon_hdr *) __mmap (NULL, expected_size, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_FILE, fd, 0); if (addr == (struct gmon_hdr *) MAP_FAILED) { char buf[400]; int errnum = errno; __close (fd); _dl_sysdep_error (filename, ": cannot map file: ", _strerror_internal (errnum, buf, sizeof buf), "\n", NULL); return; } /* We don't need the file desriptor anymore. */ __close (fd); /* Pointer to data after the header. */ hist = (char *) (addr + 1); kcount = (uint16_t *) ((char *) hist + sizeof (uint32_t) + sizeof (struct gmon_hist_hdr)); /* Compute pointer to array of the arc information. */ data = (struct here_cg_arc_record *) ((char *) kcount + kcountsize + 2 * sizeof (uint32_t)); narcsp = (uint32_t *) (hist + sizeof (uint32_t) + sizeof (struct gmon_hist_hdr) + sizeof (uint32_t)); if (st.st_size == 0) { /* Create the signature. */ memcpy (addr, &gmon_hdr, sizeof (struct gmon_hdr)); *(uint32_t *) hist = GMON_TAG_TIME_HIST; memcpy (hist + sizeof (uint32_t), &hist_hdr, sizeof (struct gmon_hist_hdr)); *(uint32_t *) (hist + sizeof (uint32_t) + sizeof (struct gmon_hist_hdr) + kcountsize) = GMON_TAG_CG_ARC; } else { /* Test the signature in the file. */ if (memcmp (addr, &gmon_hdr, sizeof (struct gmon_hdr)) != 0 || *(uint32_t *) hist != GMON_TAG_TIME_HIST || memcmp (hist + sizeof (uint32_t), &hist_hdr, sizeof (struct gmon_hist_hdr)) != 0 || (*(uint32_t *) (hist + sizeof (uint32_t) + sizeof (struct gmon_hist_hdr) + kcountsize) != GMON_TAG_CG_ARC)) goto wrong_format; } /* Allocate memory for the froms data and the pointer to the tos records. */ froms = (uint16_t *) calloc (fromssize + tossize, 1); if (froms == NULL) { __munmap ((void *) addr, expected_size); _dl_sysdep_fatal ("Out of memory while initializing profiler", NULL); /* NOTREACHED */ } tos = (struct here_tostruct *) ((char *) froms + fromssize); toidx = 0; /* Now we have to process all the arc count entries. BTW: it is not critical whether the *NARCSP value changes meanwhile. Before we enter a new entry in to toset we will check that everything is available in TOS. This happens in _dl_mcount. Loading the entries in reverse order should help to get the most frequently used entries at the front of the list. */ for (idx = narcs = *narcsp; idx > 0; ) { size_t from_index; size_t newtoidx; --idx; from_index = ((data[idx].from_pc - lowpc) / (hashfraction * sizeof (*froms))); newtoidx = toidx++; tos[newtoidx].here = &data[idx]; tos[newtoidx].link = froms[from_index]; froms[from_index] = newtoidx; } /* Turn on profiling. */ state = GMON_PROF_ON; } void _dl_mcount (ElfW(Addr) frompc, ElfW(Addr) selfpc) { if (state != GMON_PROF_ON) return; state = GMON_PROF_BUSY; /* Compute relative addresses. The shared object can be loaded at any address. The value of frompc could be anything. We cannot restrict it in any way, just set to a fixed value (0) in case it is outside the allowed range. These calls show up as calls from in the gprof output. */ frompc -= lowpc; if (frompc >= textsize) frompc = 0; selfpc -= lowpc; if (selfpc >= textsize) goto done; done: state = GMON_PROF_ON; }