/* * UFC-crypt: ultra fast crypt(3) implementation * * Copyright (C) 1991-2016 Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; see the file COPYING.LIB. If not, * see . * * @(#)crypt_util.c 2.56 12/20/96 * * Support routines * */ #ifdef DEBUG #include #endif #include #include #ifndef STATIC #define STATIC static #endif #include "crypt-private.h" /* Prototypes for local functions. */ #ifndef __GNU_LIBRARY__ void _ufc_clearmem (char *start, int cnt); void _ufc_copymem (char *from, char *to, int cnt); #endif #ifdef _UFC_32_ STATIC void shuffle_sb (long32 *k, ufc_long saltbits); #else STATIC void shuffle_sb (long64 *k, ufc_long saltbits); #endif /* * Permutation done once on the 56 bit * key derived from the original 8 byte ASCII key. */ static const int pc1[56] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; /* * How much to rotate each 28 bit half of the pc1 permutated * 56 bit key before using pc2 to give the i' key */ static const int rots[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; /* * Permutation giving the key * of the i' DES round */ static const int pc2[48] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* * The E expansion table which selects * bits from the 32 bit intermediate result. */ static const int esel[48] = { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; /* * Permutation done on the * result of sbox lookups */ static const int perm32[32] = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; /* * The sboxes */ static const int sbox[8][4][16]= { { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } }, { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } }, { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } }, { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } }, { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } }, { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } }, { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } }, { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } } }; /* * This is the initial * permutation matrix */ static const int initial_perm[64] = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; /* * This is the final * permutation matrix */ static const int final_perm[64] = { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 }; #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') static const ufc_long BITMASK[24] = { 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008 }; static const unsigned char bytemask[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; static const ufc_long longmask[32] = { 0x80000000, 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; /* * do_pc1: permform pc1 permutation in the key schedule generation. * * The first index is the byte number in the 8 byte ASCII key * - second - - the two 28 bits halfs of the result * - third - selects the 7 bits actually used of each byte * * The result is kept with 28 bit per 32 bit with the 4 most significant * bits zero. */ static ufc_long do_pc1[8][2][128]; /* * do_pc2: permform pc2 permutation in the key schedule generation. * * The first index is the septet number in the two 28 bit intermediate values * - second - - - septet values * * Knowledge of the structure of the pc2 permutation is used. * * The result is kept with 28 bit per 32 bit with the 4 most significant * bits zero. */ static ufc_long do_pc2[8][128]; /* * eperm32tab: do 32 bit permutation and E selection * * The first index is the byte number in the 32 bit value to be permuted * - second - is the value of this byte * - third - selects the two 32 bit values * * The table is used and generated internally in init_des to speed it up */ static ufc_long eperm32tab[4][256][2]; /* * efp: undo an extra e selection and do final * permutation giving the DES result. * * Invoked 6 bit a time on two 48 bit values * giving two 32 bit longs. */ static ufc_long efp[16][64][2]; /* Table with characters for base64 transformation. */ static const char b64t[64] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; /* * For use by the old, non-reentrant routines * (crypt/encrypt/setkey) */ struct crypt_data _ufc_foobar; #ifdef __GNU_LIBRARY__ #include __libc_lock_define_initialized (static, _ufc_tables_lock) #endif #ifdef DEBUG void _ufc_prbits (ufc_long *a, int n) { ufc_long i, j, t, tmp; n /= 8; for(i = 0; i < n; i++) { tmp=0; for(j = 0; j < 8; j++) { t=8*i+j; tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0; } (void)printf("%02lx ", tmp); } printf(" "); } static void __attribute__ ((unused)) _ufc_set_bits (ufc_long v, ufc_long *b) { ufc_long i; *b = 0; for(i = 0; i < 24; i++) { if(v & longmask[8 + i]) *b |= BITMASK[i]; } } #endif #ifndef __GNU_LIBRARY__ /* * Silly rewrites of 'bzero'/'memset'. I do so * because some machines don't have * bzero and some don't have memset. */ void _ufc_clearmem (char *start, int cnt) { while(cnt--) *start++ = '\0'; } void _ufc_copymem (char *from, char *to, int cnt) { while(cnt--) *to++ = *from++; } #else #define _ufc_clearmem(start, cnt) memset(start, 0, cnt) #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt) #endif /* lookup a 6 bit value in sbox */ #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; /* * Initialize unit - may be invoked directly * by fcrypt users. */ void __init_des_r (struct crypt_data * __restrict __data) { int comes_from_bit; int bit, sg; ufc_long j; ufc_long mask1, mask2; int e_inverse[64]; static volatile int small_tables_initialized = 0; #ifdef _UFC_32_ long32 *sb[4]; sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1; sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3; #endif #ifdef _UFC_64_ long64 *sb[4]; sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1; sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3; #endif if(small_tables_initialized == 0) { #ifdef __GNU_LIBRARY__ __libc_lock_lock (_ufc_tables_lock); if(small_tables_initialized) goto small_tables_done; #endif /* * Create the do_pc1 table used * to affect pc1 permutation * when generating keys */ _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1)); for(bit = 0; bit < 56; bit++) { comes_from_bit = pc1[bit] - 1; mask1 = bytemask[comes_from_bit % 8 + 1]; mask2 = longmask[bit % 28 + 4]; for(j = 0; j < 128; j++) { if(j & mask1) do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; } } /* * Create the do_pc2 table used * to affect pc2 permutation when * generating keys */ _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2)); for(bit = 0; bit < 48; bit++) { comes_from_bit = pc2[bit] - 1; mask1 = bytemask[comes_from_bit % 7 + 1]; mask2 = BITMASK[bit % 24]; for(j = 0; j < 128; j++) { if(j & mask1) do_pc2[comes_from_bit / 7][j] |= mask2; } } /* * Now generate the table used to do combined * 32 bit permutation and e expansion * * We use it because we have to permute 16384 32 bit * longs into 48 bit in order to initialize sb. * * Looping 48 rounds per permutation becomes * just too slow... * */ _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab)); for(bit = 0; bit < 48; bit++) { ufc_long mask1,comes_from; comes_from = perm32[esel[bit]-1]-1; mask1 = bytemask[comes_from % 8]; for(j = 256; j--;) { if(j & mask1) eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24]; } } /* * Create an inverse matrix for esel telling * where to plug out bits if undoing it */ for(bit=48; bit--;) { e_inverse[esel[bit] - 1 ] = bit; e_inverse[esel[bit] - 1 + 32] = bit + 48; } /* * create efp: the matrix used to * undo the E expansion and effect final permutation */ _ufc_clearmem((char*)efp, (int)sizeof efp); for(bit = 0; bit < 64; bit++) { int o_bit, o_long; ufc_long word_value, mask1, mask2; int comes_from_f_bit, comes_from_e_bit; int comes_from_word, bit_within_word; /* See where bit i belongs in the two 32 bit long's */ o_long = bit / 32; /* 0..1 */ o_bit = bit % 32; /* 0..31 */ /* * And find a bit in the e permutated value setting this bit. * * Note: the e selection may have selected the same bit several * times. By the initialization of e_inverse, we only look * for one specific instance. */ comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ comes_from_word = comes_from_e_bit / 6; /* 0..15 */ bit_within_word = comes_from_e_bit % 6; /* 0..5 */ mask1 = longmask[bit_within_word + 26]; mask2 = longmask[o_bit]; for(word_value = 64; word_value--;) { if(word_value & mask1) efp[comes_from_word][word_value][o_long] |= mask2; } } atomic_write_barrier (); small_tables_initialized = 1; #ifdef __GNU_LIBRARY__ small_tables_done: __libc_lock_unlock(_ufc_tables_lock); #endif } else atomic_read_barrier (); /* * Create the sb tables: * * For each 12 bit segment of an 48 bit intermediate * result, the sb table precomputes the two 4 bit * values of the sbox lookups done with the two 6 * bit halves, shifts them to their proper place, * sends them through perm32 and finally E expands * them so that they are ready for the next * DES round. * */ if (__data->sb0 + sizeof (__data->sb0) == __data->sb1 && __data->sb1 + sizeof (__data->sb1) == __data->sb2 && __data->sb2 + sizeof (__data->sb2) == __data->sb3) _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0) + (int)sizeof(__data->sb1) + (int)sizeof(__data->sb2) + (int)sizeof(__data->sb3)); else { _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0)); _ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1)); _ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2)); _ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3)); } for(sg = 0; sg < 4; sg++) { int j1, j2; int s1, s2; for(j1 = 0; j1 < 64; j1++) { s1 = s_lookup(2 * sg, j1); for(j2 = 0; j2 < 64; j2++) { ufc_long to_permute, inx; s2 = s_lookup(2 * sg + 1, j2); to_permute = (((ufc_long)s1 << 4) | (ufc_long)s2) << (24 - 8 * (ufc_long)sg); #ifdef _UFC_32_ inx = ((j1 << 6) | j2) << 1; sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; #endif #ifdef _UFC_64_ inx = ((j1 << 6) | j2); sb[sg][inx] = ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; sb[sg][inx] |= ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; sb[sg][inx] |= ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; sb[sg][inx] |= ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | (long64)eperm32tab[3][(to_permute) & 0xff][1]; #endif } } } __data->current_saltbits = 0; __data->current_salt[0] = 0; __data->current_salt[1] = 0; __data->initialized++; } void __init_des (void) { __init_des_r(&_ufc_foobar); } /* * Process the elements of the sb table permuting the * bits swapped in the expansion by the current salt. */ #ifdef _UFC_32_ STATIC void shuffle_sb (long32 *k, ufc_long saltbits) { ufc_long j; long32 x; for(j=4096; j--;) { x = (k[0] ^ k[1]) & (long32)saltbits; *k++ ^= x; *k++ ^= x; } } #endif #ifdef _UFC_64_ STATIC void shuffle_sb (long64 *k, ufc_long saltbits) { ufc_long j; long64 x; for(j=4096; j--;) { x = ((*k >> 32) ^ *k) & (long64)saltbits; *k++ ^= (x << 32) | x; } } #endif /* * Return false iff C is in the specified alphabet for crypt salt. */ static bool bad_for_salt (char c) { switch (c) { case '0' ... '9': case 'A' ... 'Z': case 'a' ... 'z': case '.': case '/': return false; default: return true; } } /* * Setup the unit for a new salt * Hopefully we'll not see a new salt in each crypt call. * Return false if an unexpected character was found in s[0] or s[1]. */ bool _ufc_setup_salt_r (const char *s, struct crypt_data * __restrict __data) { ufc_long i, j, saltbits; char s0, s1; if(__data->initialized == 0) __init_des_r(__data); s0 = s[0]; if(bad_for_salt (s0)) return false; s1 = s[1]; if(bad_for_salt (s1)) return false; if(s0 == __data->current_salt[0] && s1 == __data->current_salt[1]) return true; __data->current_salt[0] = s0; __data->current_salt[1] = s1; /* * This is the only crypt change to DES: * entries are swapped in the expansion table * according to the bits set in the salt. */ saltbits = 0; for(i = 0; i < 2; i++) { long c=ascii_to_bin(s[i]); for(j = 0; j < 6; j++) { if((c >> j) & 0x1) saltbits |= BITMASK[6 * i + j]; } } /* * Permute the sb table values * to reflect the changed e * selection table */ #ifdef _UFC_32_ #define LONGG long32* #endif #ifdef _UFC_64_ #define LONGG long64* #endif shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits); shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits); shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits); shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits); __data->current_saltbits = saltbits; return true; } void _ufc_mk_keytab_r (const char *key, struct crypt_data * __restrict __data) { ufc_long v1, v2, *k1; int i; #ifdef _UFC_32_ long32 v, *k2; k2 = (long32*)__data->keysched; #endif #ifdef _UFC_64_ long64 v, *k2; k2 = (long64*)__data->keysched; #endif v1 = v2 = 0; k1 = &do_pc1[0][0][0]; for(i = 8; i--;) { v1 |= k1[*key & 0x7f]; k1 += 128; v2 |= k1[*key++ & 0x7f]; k1 += 128; } for(i = 0; i < 16; i++) { k1 = &do_pc2[0][0]; v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); v = k1[(v1 >> 21) & 0x7f]; k1 += 128; v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; v |= k1[(v1 ) & 0x7f]; k1 += 128; #ifdef _UFC_32_ *k2++ = (v | 0x00008000); v = 0; #endif #ifdef _UFC_64_ v = (v << 32); #endif v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; v |= k1[(v2 ) & 0x7f]; #ifdef _UFC_32_ *k2++ = (v | 0x00008000); #endif #ifdef _UFC_64_ *k2++ = v | 0x0000800000008000l; #endif } __data->direction = 0; } /* * Undo an extra E selection and do final permutations */ void _ufc_dofinalperm_r (ufc_long *res, struct crypt_data * __restrict __data) { ufc_long v1, v2, x; ufc_long l1,l2,r1,r2; l1 = res[0]; l2 = res[1]; r1 = res[2]; r2 = res[3]; x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x; x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x; v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; res[0] = v1; res[1] = v2; } /* * crypt only: convert from 64 bit to 11 bit ASCII * prefixing with the salt */ void _ufc_output_conversion_r (ufc_long v1, ufc_long v2, const char *salt, struct crypt_data * __restrict __data) { int i, s, shf; __data->crypt_3_buf[0] = salt[0]; __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0]; for(i = 0; i < 5; i++) { shf = (26 - 6 * i); /* to cope with MSC compiler bug */ __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f); } s = (v2 & 0xf) << 2; v2 = (v2 >> 2) | ((v1 & 0x3) << 30); for(i = 5; i < 10; i++) { shf = (56 - 6 * i); __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f); } __data->crypt_3_buf[12] = bin_to_ascii(s); __data->crypt_3_buf[13] = 0; } /* * UNIX encrypt function. Takes a bitvector * represented by one byte per bit and * encrypt/decrypt according to edflag */ void __encrypt_r (char *__block, int __edflag, struct crypt_data * __restrict __data) { ufc_long l1, l2, r1, r2, res[4]; int i; #ifdef _UFC_32_ long32 *kt; kt = (long32*)__data->keysched; #endif #ifdef _UFC_64_ long64 *kt; kt = (long64*)__data->keysched; #endif /* * Undo any salt changes to E expansion */ _ufc_setup_salt_r("..", __data); /* * Reverse key table if * changing operation (encrypt/decrypt) */ if((__edflag == 0) != (__data->direction == 0)) { for(i = 0; i < 8; i++) { #ifdef _UFC_32_ long32 x; x = kt[2 * (15-i)]; kt[2 * (15-i)] = kt[2 * i]; kt[2 * i] = x; x = kt[2 * (15-i) + 1]; kt[2 * (15-i) + 1] = kt[2 * i + 1]; kt[2 * i + 1] = x; #endif #ifdef _UFC_64_ long64 x; x = kt[15-i]; kt[15-i] = kt[i]; kt[i] = x; #endif } __data->direction = __edflag; } /* * Do initial permutation + E expansion */ i = 0; for(l1 = 0; i < 24; i++) { if(__block[initial_perm[esel[i]-1]-1]) l1 |= BITMASK[i]; } for(l2 = 0; i < 48; i++) { if(__block[initial_perm[esel[i]-1]-1]) l2 |= BITMASK[i-24]; } i = 0; for(r1 = 0; i < 24; i++) { if(__block[initial_perm[esel[i]-1+32]-1]) r1 |= BITMASK[i]; } for(r2 = 0; i < 48; i++) { if(__block[initial_perm[esel[i]-1+32]-1]) r2 |= BITMASK[i-24]; } /* * Do DES inner loops + final conversion */ res[0] = l1; res[1] = l2; res[2] = r1; res[3] = r2; _ufc_doit_r((ufc_long)1, __data, &res[0]); /* * Do final permutations */ _ufc_dofinalperm_r(res, __data); /* * And convert to bit array */ l1 = res[0]; r1 = res[1]; for(i = 0; i < 32; i++) { *__block++ = (l1 & longmask[i]) != 0; } for(i = 0; i < 32; i++) { *__block++ = (r1 & longmask[i]) != 0; } } weak_alias (__encrypt_r, encrypt_r) void encrypt (char *__block, int __edflag) { __encrypt_r(__block, __edflag, &_ufc_foobar); } /* * UNIX setkey function. Take a 64 bit DES * key and setup the machinery. */ void __setkey_r (const char *__key, struct crypt_data * __restrict __data) { int i,j; unsigned char c; unsigned char ktab[8]; _ufc_setup_salt_r("..", __data); /* be sure we're initialized */ for(i = 0; i < 8; i++) { for(j = 0, c = 0; j < 8; j++) c = c << 1 | *__key++; ktab[i] = c >> 1; } _ufc_mk_keytab_r((char *) ktab, __data); } weak_alias (__setkey_r, setkey_r) void setkey (const char *__key) { __setkey_r(__key, &_ufc_foobar); } void __b64_from_24bit (char **cp, int *buflen, unsigned int b2, unsigned int b1, unsigned int b0, int n) { unsigned int w = (b2 << 16) | (b1 << 8) | b0; while (n-- > 0 && (*buflen) > 0) { *(*cp)++ = b64t[w & 0x3f]; --(*buflen); w >>= 6; } }